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S.

elf-Critical ANOVA with AppUcation to Prothrombin Time

Summary

The purpose of this work was to develop procedures wtich would improve the

uniformity of the grading procedure in the hematology proficiency teting program of

the New York State Department of Health. Approximately .0 laboratories in New York

participate In a program of clinical laboratory proficiency testing, with each

laboratory using one of eight methods and one of nine thromboplastni. The responses

of each testing program may be modeled an a two-way layout, some cells of which are

empty. A model-critical analysis of variance technique was used to determine

maltaneously, and in the presence of out-of-control laboratories i.e. , outliers, the

effects of method and thromboplastin on prothrombin time. The word model-critical

Indicates that, according to the model, set up initially on a tentative basis so as to

allow for further evolution, the responses should have the structure of a two -way

layout with interaction, and that the responses iould have a common error

distribution. This tentative framework is examined critically by varying the way

observaUonal information is procssed to produce parametric summaries. rf the

aumarizations are insensitive to the variation in information processing, then the

tentative model standsl if not, the tentative model must be evolved. We provide an

objective means of statistically aseing variations in summarization.

The model-criUcal analysis produced a common standard deviation, identified

out-of-control laboratories and produced a narrowr acceptable range of reported

prothrombin times and thus improved the efficiency of the grading procedure. Por

proficiency testing no advantage was found in the use of either a common

thromboplastin or freeze-dried, coumarinized patient plasmas rather than artific&Uy

depleted commerical plasmas, except for special purposes.

Keywordst proficiency testing; model-critical estimation; outliers, prothrombin
time; generalLzed likelihood, information divergence, thromboplastLU
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1. INTRODUCTON

. The Now York State Department of Bealth operates a program of clinical

laboratory proficiency testin. En this testing program, samples are sent periodically

In mallout kits to all laboratories testing hutman specimens from the residents of the

State. For many clinical sample types, It Is not possible to prepare a sample in

which the parameters are known in advance; they minst be estimated from the data.

The resilts of the test are graded on two bases. If any revilt contains an error of

such a magnitide as to jeopardize the weU-being of a patient, the remlt In

unatisactory. n order to detect problem before they adversely affect a patient's

health, statistical quality control concepts are also used as a basis for grading.

Under this combination of concepts, one would hope to find that the bulk of the remAl

would foUow a weU-behaved error model with a small number of outilers that represent

the out-of-control laboratories.

n this report we wil focus on the testing of proficiency of prothrombin time, a

meamare of plasma clotting time. Prothrombin time is used principally to monitor the

status of patients being treated by oral anticoagulant drug therapy. An overdosage of

an anticoagulant ouch an warfarin may lead to hemorrhagic complicatione, while

underdoaage increases the rl of thromboembolic complcatlons. Ti test is also

used routinely to screen patients to detect thoe at risk of bleeding excessively. For

both purposes, the prothrombin time must be accurately standardized and correctly

Interpreted.

The effect of thromboplastin on prothrombin time has been shidled by a rumber of

investigators (Loelliger et al. (1984); Bilggs and Denson (1967); Ingram and His

(1976); Loeliger et al. (1976); Poller (1975)). Reference thromboplastinw for

calibration have recently become available (Hermans and Yon den Desselaar (1963)1

, ~. .



von den Dsswelar et al. (196d)) but them have been used infrequently in the United

States. The alsultaneous effects of method and thrombopLaAtn have al been

reported VMU ot al. (1961)1 Triplett at al. (1914); von den Bem&laar et al.

(1964)). Proficiency testing Is coapUcated by the fact that prothrombin time

measremen vary not only with the sll of the performer but also with the method

and the thromboplastin, a clot initiation reagent, used. En proficiency teting, it is

am to take into account structural effects of method and thrombolplaStin as weU

an the error model while avoiding the excessive influence of the outlying, or out of

control, observations. The model we make use of in order to account for all the

Inter-relatIoeMtps In a two-way analysis of variance with Interaction and a large

proportion of empty cells.

In the next section, we wiU develop a model-critical or self-critical estimaUion

procedure. The specifics of materials and data are given in later sections. The

fourth section describes our application of the self-critical method to the prothrombin

proficiency testing problem.

2. Model-Critical or Self-CriUcal Analysis of Variance

We provide first a genera-izaUon of the log Lkelihood for the normal distribution

and then generalize this log Likelihood to a two-way layout with interaction and empty

cells. Let f(x, IA, a ) represent the Gaussian density with mean ; and variance aa.

It is easy to show that

ff.-+c(x: =,al)dx Q(ua2,c)= ((2Yfa2)c(1+c)]-, (2.1)

-1 < c < w, in the information generating function (Golomb, 1966) of f(x). Por

notaUonal convenience we shall often delete the arguments of functions when

2
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misinterpretation is not possible; for example we will sometimes write f(x) or simply

f for f(x: A, 8a). observe that Q(M,olO) = I and that the information-theoretic

propertes of f(z) my be developed from Q, for example the entropy of f(xi ,e)-

is - 8( ,0,O)/c. our main objocuve is to develop a model-critical estimation

poede for js and a2 of f(x) based on the equation (2.1). This is accomplished

by rearramgIng (2.1) to get

LL!! d . (2.2)

If we differentiate (2.2) with respect to 0 = j and a2 we get

ogf - 82 dX 0. (2.3)

The construction embodied in (2.2) and (2.3) shows that if z Is a random

variable with density f, then the expectation

EfC[(c) " --J " 0. (2. )

Accordingly, if x,,xa,..., xn is a random sample from f(xz g,a), then

setting B = j4 and B = a2 in

n [logf(x) alogQ
1: fC(xi) (1+C) o-feel =O,

form a set of estlmating equatiorw for 9 = /4 and a. The Line of argument from

(2.1) to (2.5) is parallel to that of max,-m Likelihood (see for example, Kendall

and Sbart, Vol. 1I, pp. 6-10). Indeed, the equations (2.5) are those of the (log)

likelihood estimators when c=O. The estimators for u and a' satisy the Implicit

equat ions
n

A - WI (C) K1 ,

all = (1+C) r W,(C) (xI-M)Z, (2.6)1 =1

vi(c) = fC(XI .,a), v.(c) = £ vI(c).
1=1

WI(c) = v,(c)/v.(C)

3
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The estimators for g and a, A(c) and 7z(c) say, have been constructed so as to

impose an adaptive -Gaumian screen" or 'template" on the data. The action o this

screen in accomplished through the factor f c ( x ) in (2.3) and through fc(x,) in

(2.5). The screen is adaptive becauLe the values of )A and aa are not known but In

the process of iterating in (2.6) the estimators A(c) and aa(c) finally settle on

values which are most consistent with the working model of Gaumlanity and the data.

If, for example, an outlying observation x, not consistent with GaumLanity Is present

in the set x,,xz,..., xn, then the screen wll Impose the weight fC(xt

W(c).A(c)) on the observation xi so that its contribution to the estimates of I and

az will be small. This particular x 1 wil almost always require further study or

attention but in some cases, as in this paper, these observations need to be removed

from the original data set as weU as investigated. The action of the screen is not

limited to a single observation, we have found these methods to be useful in practice

even when as many as 402 of the original sample were highlighted as not consistent

with a single Gaussian population.

The estimating equation (2.5) may be regarded as a differential equation whose

solution may be shown to be the objective function, the generalized likelihood,

M fC(xJ: A,01C =___f_,: /._,-) , C 0 , (2.7)
c 1=11 Q*(MC1 1|C ILQe(Alz, ,c)

where a = c/(l+c). The objective function 1c is a generalization of the log

likelihood; indeed the limit of Ic as c tends to zero reduces to

n
I o =L log f(x,: AoZ), (2.8)J=1

the mal log likelihood.

The expression (2.7) is easily extended to cover a Gaussian error structure



, . ., , .: . j - . - - s.- - \4- • -Y.-- .- ,-.-.r--s i"r t r:rri - w - .- - o '- - -: L _ . . .

combined with functional structure. Accordingly we 8ha develop an objective function

for the two-way anals at variance layout with interaction and empty celia. The

variation of the user specified c parameter corresponds to variation in the way the

information is extracted from the sample to arrive at model specificaUon.

The family ot estimators or model Ammiarzations which remalt from variation o the

user-specifled coeffictent c abould not change much if the underlying tentative model

and the data are internally cordistent. indeed, extensive simulation trials completely

corroborate ti statement; on the other hand, If model and data are not consistent,

the estimates can vary dramatically. This is particularly true If the data contains

outliers vis-a-vis the error distributon ammption. Because all at our analyses

center on the proceming of sample information to arrive at a mimmarlzatlon of a

tentative model, we will call the procedure which enables this self- or model- critical.

Models are evolved when this procem o model-criUcm (Box, 1979; Daniel 1970;

Paulon and Nicklin, 1963; Paulson and Delehanty, 1963) show that the data and the

model, both error and function components, are not internally or muftawLy conistent.

As w shall me, an appropriate model for the hemotology testing program is

Yljk 7 g 102(Xjk) = M + a+ +31 + YIj + U11k, (2.9)

for 1 = 1, = 1,2,..., J, k = 1,2,..., nl,, and where ulak are

independent normal (Gaumrian) with mean zero and variance a2, in short u1 j k are

N(O,0z). The jI]k represent the prot'rombin time for the kt" laboratory using

method I and thromboplastin j in our context. The generalized LikeLthood for the

model (2.9) is

1 ref(u ,k)
0c = - C £ £ I - , (2.10)

C. k. I _ -- - ). .



where

f(Uljk) - (2ffra)'I *Xp- (Zj k  i - al - j yij)z/o*

and Q in as before. On differentiating IC with respect to ji, a,, 13, Yvj, and a'

and setting the resulting expresiiorw to zero we obtain the system of implicit equatlorw

C - C (yijk A " al 13j - Yij) VIJk(C) = 0 (2.11a)
I k

C " (YIk -i. I - - Yi ) VIjk(C) = 0, i=1,2,....I, (2.11.b)
jk

r " (Yl k A J " " - Yij) Vlk(C) = 0, J=1,2,...,J, (2.11.c)
Ik

" (YiJk - -k1 al Yi) VI k(C) = 0, i=1,2,...,r (2.11.d)k .=1,2, ... ,J,

(14-C) £ C i" (Y jk - i- - 1 - yij)2 Vljk(C)

(2.11.e)
E L E VIjk(C)
I k

and

Vljk(c) = exp{-2 (YlIk A al - 13j - I y t)z/t9 (2.11.f)

The system (2.11) is not of full rank for cbO. In order to obtain a full rank system

we Impose the constraints and these are the most natural '

" avi .. (c) = 0, J 3 V. .(c) = 0, (2.12.&)

£ yI1 vlj.(C) = 0, -1,2. .. , (2.12.b)

C yjv 1 ).(c) 0, 1=1,2,... ,, (2.12.c)
II

and where a dot inidicates summation over a subecript, e. £.,

v,.(c) : £ vI(c) v..(c) k C I v Ik(C)
k Jk

6
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This system o equations is solved by recursion. Program are available on request

from the authors.

Equations (2.9)-(2.12) determine the generalized Likelihood or model-critical

analysis for a two-way layout with (n 1 = 0 for some I and J) or without (n1 3 > 0)

empty ceUs. When cells of the array are empty, the sme equations are appUcable

but with some minor modifications to be discussd in section 4 In the context ot the

analysis of the prothrombin time data.

Typical values of c to be used in the model-critical procedure involving a two-way

layout with a normal error distribution are 0 4 c A 0.50. As c varies from c = 0 to

c = .1, .2, .3, for example, the parameter estimates mrface e(c) = (j(c), &'(c),

hj (c), yi 1 (c), o'(c), I = 1,2..., 1, j = 1,2,...,J), say, VI aU vary as a

function of c. We need to be able to objectively anses whether the response mrface

varies staUstcally significantly as a function of c. The next section provides

procedures for making this assessment.

3. Tests of Fit

First we consider the case when x,.,x,,. . , x n  is tentatively taken to be

independent N(A,ar). The process of varying the way the information in the data Is

summarized in the param eter ji and a' through the generalized likelihood will lead to

families of mummarizations /A(c) and o2(c). For two different values of c, c and c',

say, the values of (c) and A(c'), oa(c) and al(cl) can be different. These

differences can be used to develop a rtatical test of fit for the appropriateness of

the model. Given the estimates M(c) and a2(c), an estimate of the model density Ls

f(x: A(c),a'(c)) = (2,'r(c))'i exp(-'(x-g(c))2a'2(c)). (3.1)

7



This estimate of the model density capture@ the mmple information provided the

tentative Gaussian model Is correct. A tot of appropriatenem of the Gaussian model

for the data x,,z,..., x. can be based on

D(1,2c) = n (f(X, ;L, aa)-f(x, A(C),O (c)) lot f(x: (3.
r-M f(x: A(c),oa(c))

for some cO0, where D(1:2tc) represents an information divergence (Kullbak, 1959,

Chapters 1 and 2) based on the assumed model and the data as sinarized in the

estimators J(c) and oa(c), cAO. We have extensively investigated this statistic as a

t4wt of fit for a variety of values of c and found that It does indeed make for a good

test of Gauslanity. However, the percentage points of this statistic are appropriate

for the case of testing that x.,xz,..., x n are independent Gaussian N(O,a) but

would not be appropriate for testing a model with combined Gaussian error and

functional structure since the required percentage points depend on the specifics of

the functional model structure. Thus D could not be used to test the appropriateness

of (2.9) for prothrombin times.

However, another information divergence which explicitly depends only on

estimated variances az(c), and which does not depend on the specifics of the

functional structure of the model in

J(1,2:C) = n f(f(x, O,a z ) - f(x: O,az(c)) log f(x: 0,aZ) dx (3.3)f(x: Oaa(c))

n _ + !!(c) 2

The statistic J represents the divergence between an estimate of a Gumian density

based on the maximum Ukelihood estimate of the variance and an eetimate of the

Gaussian density based on the generalized likelihood eftlmate of variance. Dn this

case any common mean subettuted for zero in (3.3) wll yield the same remslt. This

e
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does not imply that (3. 3) Is Independent CI the estimates of the mean S way be seen

from mystm (2.6).

he sttisic (3.3) Can be vieQI a an analgu e of the Shapiro-Wk V staistUc

for testing for GaueslanIty (Shapiro and WUk 1965). The ratinale behind

[taxj / K)(x -*), (3.4)

where xzOx,..., Ig I putatively N(4,ra) and the &I are tabulated cowutants

(Shapiro, 1960), L that the numerator and denominator of (3.,) are both estimates

of a constant multiple of az. If one at the estimators In markedly dlfferent from the

other, sall values of W will result and evidence against the hypothesis of Gauslanity

will be strong.

The rationrae behind the nonnegaUve statistic J(It2tc) of (3.3) Iu simila and I

as follows. If X,,X, ... , xn are independent N(,az), twn, apart from sampling

error, both a' and al(c) are estimators for az . Large values of J(It2ic) Will

* provide evidence against the hypothesis of Gausetanty. The statistic J(1:2tc) tU

particularly sensitive to outlier-like departure@ from Gauselanlty since the influence

CAe (see Barnett and LeWis, 1976, pp. 136-142) at observation xj for the

estimators of 1A and a' at the unvariate Gaussian density are proportional to

f(XJI*Aa ){(1+C) &lot f(xj:MAal) _:8log C > 0,

for 0 = IA and aa respectively.. Therefore, in the process of the generalized

Lkelihood's adaptation to the best summarization of the data consistent with the

tentative model of Gausianity, the influence of an outlying observation or groups of

outlying observations will be ultimately downwelghted by tc(xjz (c),az(c)). por zj

far removed from JA(c) in comparison with the scale a(c), fLC(xj, u(c),oa(c)) will be

nearly zero.

9
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Table 1 provides the upper percentage points for the statistic J(1 2 ic) for c

-. 2-.,.,.2.3.~.5and for n = 10,20,24,30,40,60,120,480. These percentage%

points have been developed as follows. First, 10,000 Independent realizations of

J(I1 23 c) were smul1ated for each value of c and n. Next these realizations were put

In ascending order and appropriate estimates of the percentage Points were tabulated.

Finally, cubic spUne functions were fit to the resulting surfaces in maple size n,

coefficient c, and size of tesat a. Completely independent simulations, I.e.

Independent programmers and prog rame, were used to check the simuiations whIcft

produced Table 1.

In order to determine the dependence of the percentage points J of Table I on

the specifics of a functional model sturct.are, the percentage points of J were

sinmilated under a variety of regression structures, linear model structures, and

nonlinear functional model structuares, all under the assmption of an additive GauMean

error struacture. En all cases the percentage points of the statistic J were the same

an those computed under the model assmption that a Gaussian error structure alone

describes the data, i.e. , x,,, xn are independent II(M. a'), apart from *
sampling error and a correction which accounts for the number of parameters

estimated. This independence of J of the functional structure is suggested by the

similar property of the Shapiro-Wil1k statistic but we have not succeeded in developing

an analytical proof.
DV

Consider the modeling framework where It is postulated the responses of interest

follow the tentative functional and error representation

y=: h(X~jixZj,. ... P JCpi ; e1 e. L, eO 0) + el, 1 1, 2,. .. , n,

where h is some specified functlrn which may simply be constant gs, the additive errors

eare independently and Identically N (0, a), the xj1 are measuirements on variables

which may influence the y, and e e,. 9q are parameters to be estimated from

10



the data. The tentative model will be fit by generalized likelihood for c=0 and some

*C>O , MYC-.3, With r6"tJg *gtjMMOtes j(c) and Cr2(c).- The staIstic J(lt2tc) in

* this settng computed an

J(1s2eC) = -~ + -z- -2I

Fered o Tble1. f J 4 (~C) OX

and refed oTbe1 fJ12,)exed the tabulated critical value at level

a, then It Is possible to improve the tentative model in the sene that some data may

be incorulstent with the model,* the fuinctional structuare of the model may nedto be

*evolved, the error structure of the model may nedto be evolved, or both error

structure and funmctional structure should be exaained and evolved, etc. En some

caus considerable study may be required before the source of a statistically

sIgniftcant J( a2, c) is found and a choice for evolution of the model is5 made,

although in many cases, such an here for prothrombin times, the source at a

statistically s1ignfcant J( 1,2 c) may be readiy found. Standard graph~ical and

diagnoetic procedure soul~d be used in cofl)Jnction with the generalized likelihood, and

the generalized likelihood residuals and the J test. Indeed, we regard all aspects of

the generalized likelihood am complementary to the standard procedures of data

analysis and statistics. we note, in passing that the statistic J of ( 3. 3) is readily

extended to the p -variate came.

Even humgh the statistic J (112t c) has been developed to aid in model asesment

and evolution, It provides for a good pure test for normality. Table 2 presente

Powrs Of the J, skewnew b,, kurtosfis b2, the Anderson -Darling, and the

Shapiro-Wilk tests for normality under the alternatives of a heavily right-skewed

lognormal distribution, t distributions on x degrees of freedom (designated T( m) ),

chi -wuared distributions m * degrees of freedom (designated 9 C U)), and four

mixtuare alternatives, Xxi -Xx4. The MizburO alternatives are am fo~iows: NxjisI 751



P(O,1) and 255 N(2,1); Mx2 is 505 N(0,1) and 502 N(2,1)i Mx3 is 505 N(0,1)

and 50% (0,4)i Kx4 I 50 N(0,1) and 50% N(1,1). Kx4 In a particularly severe

test of any test for normality since the existence ot the mixture can be very difficult

to detect. We have provided tabulations in Table 1 and Table 2 of values c = -0.2

and -0.1 because the use of negative C in the generalized likelihood has been found

to be useful n several applications Involving In-lying contamination of data and

multiple clusters of data. Tabulations of powers In Table 2 Indicates that J(1,2tc)

provides for a good test of normality for a wide range of c. The Importance of

J(1t2sc), however, IS due to its lnking estimation and assessments of fit.

Example. En a study concerning tests for outliers, Quenenberry and David (1961)

provide the sixteen observations .32,.35,.37,.38,.39,.",.45,.4",.*7,.48,.52,.53,

.57,.74,.74, 1.09 in Illustration of a stud*ntzed range test. This studentized range

test finds the observation 1.09 to be too large, but Yust barely, to be consistent with

the xx,,x.... r1 * being Independent and identically Gausfian. We find z = a,2(0)

= 0.0357, 2(.3) = 0.0134 and J(l2sc) = 8.32. Comparison of this value of J

with the critical values of Table 1 shows that thi data in dramatically non-normal, a

finding visually corroborated by a normal probability plot. The studentized range test

experiences difficulty in rejecting the observation 1.09 as an outlier because the

outlying nature of this data point in being inter-mixed with the otherwise dramatic

non-normalty of the data and the value 1.09 is also dramatically influencing the

estimated variance of the sample.

The J(121c) test statistic is useful In evaluating the statistical status of a

tentative modeling structure and in determining whether a tentative model should be

evolved. Furthermore, the use of diagnostic tools stemming from the generalized

ikeLihood procedure and other diagnostic tools wiU usually be helpful in determining

the direction of the evolution.

12



Table 1. Percentage Points o the Test StatMItIc J(1121C) for -0.2 4 c A 0.5

Size of Teat

Sal1e Size 0.75 0.60 0.65 0.90 0.95 0.975 0.99

10 0.38 0.45 0.60 1.61 6.40 15.7 40.5
20 0.46 0.56 0.70 1.11 2.70 5.32 10.6
24 0.48 0.56 0.74 1.10 2.34 4.40 6.37

c-0.5 30 0.49 0.60 0.75 1.07 2.16 3.91 6.95
40 0.51 0.63 0.90 1.06 1.95 3.31 5.60
60 0.53 0.65 0.90 1.05 1.66 2.76 4.50

120 0.54 0.67 0.64 1.10 1.66 2.33 3.64
460 0.55 0.69 0.97 1.10 1.65 2.10 3.11

10 0.24 0.29 0.34 0.61 2.45 6.92 19.7
20 0.30 0.36 0.45 0.64 1.60 3.02 6.33
24 0.31 0.30 0.48 0.66 1.45 2.64 5.07

C-0.4 30 0.32 0.40 0.50 0.66 1.35 2.41 4.40
40 0.34 0.42 0.53 0.70 1.30 2.20 3.73
60 0.36 0.". 0.55 0.72 1.12 1.95 3.15
120 0.37 0.46 0.57 0.75 1.11 1.65 2.51
480 0.37 0.47 0.60 0.65 1.09 1.51 2.10

10 0.13 0.15 0.16 0.23 0.74 2.11 6.16
20 0.17 0.21 0.26 0.34 0.77 1.46 3.19
24 0.16 0.22 0.27 0.36 0.77 1.41 2.67

C=0.3 30 0.19 0.23 0.28 0.36 0.77 1.39 2.47
40 0.20 0.24 0.30 0.42 0.74 1.31 2.15
60 0.21 0.26 0.32 0.4 0.69 1.10 1.62

120 0.22 0.29 0.34 0.45 0.67 0.96 1.49
480 0.22 0.26 0.35 0..6 0.67 0.96 1.26

10 0.059 0.069 0.076 0.095 0.19 0.48 1.33
20 0.076 0.092 0.11 0.14 0.27 0.54 1.29
24 0.082 0.097 0.12 0.15 0.29 o.56 1.23

C-0.2 30 0.067 0.10 0.13 0.16 0.31 0.57 1.12
40 0.092 0.11 0.14 0.19 0.31 0.56 1.02
60 0.099 0.12 0.15 0.20 0.32 0.53 0.92
120 0.11 0.13 0.16 0.21 0.32 0.47 0.75
480 0.11 0.14 0.17 0.23 0.33 0.46 0.69

10 0.015 0.017 0.020 0.023 0.031 0.052 0.11
20 0.020 0.023 0.028 0.034 0.051 0.095 0.23
24 0.021 0.025 0.030 0.037 0.056 0.11 0.2S

C:0.1 30 0.023 0.027 0.032 0.040 0.066 0.12 0.26
40 0.024 0.029 0.035 0.045 0.072 0.13 0.25
60 0.027 0.032 0.039 0.050 0.074 0.13 0.23

120 0.029 0.036 0.0" 0.057 0.095 0.12 0.21
480 0.030 0.039 0.047 0.060 0.069 0.12 0.20
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Table 1. Percentage Points of the Test Statistic J(12:c) for

-0.2 C A 0 .5 (cont'd)

Sample Size 0.75 0.60 0.85 0.90 0.95 0.975 0.99

10 0.017 0.019 0.022 0.025 0.029 0.034 0.036
20 0.022 0.025 0.029 0.035 0.04" 0.055 0.093
24 0.023 0.027 0.031 0.038 0.0149 0.063 0.11

c=-0.1 30 0.025 0.030 0.035 0.042 0.054 0.071 0.13
40 0.027 0.032 0.036 0.047 0.063 0.091 0.17
60 0.030 0.036 0.043 0.054 0.075 0.11 0.20

120 0.0346 0.041 0.052 0.065 0.094 0.14 0.24
1480 0.036 0.0,47 0.060 0.075 0.11 0.16 0.28

10 0.077 0.086 0.097 0.11 0.13 0.15 0.16

20 0.097 0.11 0.13 0.15 0.11 0.22 0.26

24 0.10 0.12 0.1/ 0.16 0.20 0.25 0.33
C=-0.2 30 0.11 0.13 0.15 0.16 0.22 0.27 0.42

40 0.12 0.14 0.16 0.20 0.26 0.33 0.55
60 0.13 0.16 0.19 0.23 0.31 0.40 0.70
120 0.15 0.16 0.22 0.26 0.40 0.55 0.97
480 0.17 0.21 0.26 0.33 0.49 0.70 1.23
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Table 2. ComparaU1 Powers of the J, bl and bi, the Anderemn-Darlrig (A-D),
aO Shaptro- V (S - 1) Staitlics for Sevral AlternaUvee

(a) SLm a a 0.1 and n = 20

0.5 0.4 0.3 0.2 0.1 -0.1 -0.2 bi b2 A-D S-W

Ly 0.64 0.32 0.30 0.77 0.72 0.59 0.52 .. .. 0.94 0.96
T(9) 0.22 0.22 0.21 0.20 0.19 0.15 0.12 .. .. 0.17 0.15
T(7) 0.27 0.26 0.25 0.24 0.22 0.17 0.15 .. .. 0.19 0.19
T(S) 0.34 0.34 0.34 0.32 0.29 0.23 0.19 .. .. 0.24 0.24
T(3) 0.52 0.52 0.51 0.40 0.46 0.37 0.32 .. .. 0.41 0.42
T(1) 0,93 0.92 0.92 0.90 0.89 0.52 0.78 .. . 0.90 0.36
X'(14) 0.20 0.20 0.20 0.19 0.13 0.16 0.15 .. .. 0.24 0.20
X2(10) 0.25 0.25 0.25 0.24 0.23 0.19 0.16 .. .. 0.31 0.34
X8(6) 0.32 0,33 0.32 0.31 0.26 0.22 0.20 .. .. 0.43 0.46
X'(4) 0.42 0.42 0. 40 0.39 0.36 0.27 0.24 .. .. 0.56 0.6"
Xa(2) 0.63 0.62 0.56 0.55 0.51 0.39 0.34 .. .. 0.86 0.91
X'(1) 0.34 0.62 0.79 0.75 0.69 0.54 0.45 .. .. 0.99 1.00
Nxl 0.10 0.09 0.06 0.06 0.06 0.06 0.09 .. .. 0.16 0.15
Nx2 0.02 0.03 0.05 0.06 0.12 0.16 0.20 .. .. 0.10 0.09
Nx3 0.31 0.31 0.30 0.27 0.23 0.15 0.11 .. .. 0.22 0.21
Nx4 0.09 0.06 0.03 0.09 0.10 0.10 0.10 .. .. 0.10 0.10

(b) SiZ* a 0.1 and n = 50

CJI 0.99 0.99 0.99 0.93 0.97 0.92 0.67 1.0 0.94 1.0 1.0
T(9) 0.31 0.31 0.30 0.30 0.29 0.24 0.22 0.23 0.24 0.19 0.16
T(7) 0.40 0.41 0.40 0.40 0.38 0.31 0.26 0.29 0.32 0.26 0.23
T(5) 0.55 0.56 0.55 0.S4 0.52 0.47 0.41 0.41 0.47 0.40 0.35
T(3) 0.80 0.80 0.79 0.76 0.76 0.71 0.64 0.51 0.72 0.69 0.61
T(1) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.92 1.0 1.0 1.0
X'(14) 0.30 0.31 0.31 0.30 0.29 0.25 0.23 0.59 0.25 0.SO 0.56
X'(10) 0.37 0.36 0.37 0.36 0.35 0.29 0.27 0.69 0.31 0.59 0.69
XZ(6) 0.50 0.50 O.SO 0.46 0.45 0.36 0.33 0.66 0.40 0.62 0.69
X(4) 0.65 0.65 0.64 0.61 0.57 0.47 0.42 0.95 0.50 0.94 0.90
X'(2) 0.8 0.87 0.65 0.63 0.79 0.66 0.61 0.99 0.72 1.0 1.0
XZ(1) 0.99 0.96 0.96 0.97 0.95 0.67 0.81 1.0 0.91 1.0 1.0
NXl 0.10 0.09 0.07 0.07 0.06 0.06 0.09 0.22 0.06 0.25 0.25
Nx2 0.12 0.13 0.14 0.15 0.16 0.24 0.27 0.03 0.25 0.14 0.19
Nx3 0.46 0.46 0.44 0.41 0.36 0.26 0.24 0.26 0.31 0.30 0.21
Nx4 0.10 0.10 0.10 0.10 0.10 0.11 0.11 0,06 0.11 0.11 0.11
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Table 2. Compaative Pow er the ,, b, and b,, the Andergon-DarUng (A-D).
and Shaptro-WVlk (S-W) Statatsci for Several Alternatives (cot'd)

(c) Size a a 0.1 and n a 100

0.5 0.4 0.3 0.2 0.21 -0.1 -0.2 bI b2 A-D S-W

TA 1.00 1.00 1.00 1.00 1.00 0.99 0.96 1.00 1.00 1.00 1.00
T(9) 0.41 0.42 0.42 0.43 0.42 0.36 0.35 0.23 0.37 0.29 0.43

T(7) 0.56 0.57 0.57 0.57 0.55 0.51 0."6 0.35 0.50 0.36 0.54

T(5) 0.76 0.77 0.77 0.76 0.74 0.70 0.65 0.51 0.70 0.61 0.74

T(3) 0.95 0.95 0.95 0.95 0.94 0.92 0.8 0.71 0.93 0.69 0.94

T(1) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00

X'(14) 0.36 0.33 0.39 0.40 0.36 0.34 0.31 0.66 0.34 0.75 0.AS

xx(1o) 0.48 0.49 0.50 o.SO 0.49 0.43 0.36 0.94 0." 0.66 0.94

X1(6) 0.67 0.66 0.66 0.65 0.62 0.55 0.49 0.99 0.57 0.96 1.00

X'(4) 0.64 0.64 0.83 0.82 0.79 0.71 0.64 1.00 0.73 1.00 1.00

X'(2) 0.96 0.96 0.96 0.97 0.95 0.91 0.66 1.00 0.93 1.00 1.00

XR(1) 1.00 1.00 1.00 1.00 1.00 0.99 0.97 1.00 0.99 1.00 1.00

NXl 0.10 0.09 0.09 0.09 0.06 0.08 0.10 0.36 0.09 0.40 0.36

Kx2 0.23 0.29 0.29 0.30 0.31 0.36 0.39 0.02 0.39 0.22 0.15

Mx3 0.66 0.65 0.63 0.60 0.57 0.46 0.42 0.30 0.49 0.47 0.56

Kx4 0.09 0.09 0.09 0.10 0.10 0.11 0.12 0.06 0.11 0.10 0.11
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4. Reitlf of the Prothrombin Testing Program

Approximately 4W laboratories participate in the New York Department of Health

prothrombin tie pro(iciency testing program. This paper wil focus on the

approximately 320 of these .00 laboratories which use automated testing methods. The

data analyzed in this study were reported for 12 test specimens, 3 in each of 

specimen mailoutsI January, July, and October at 1982 and July 1963. The

laboratories which utilized automated testing methods used various combinations of eight

analysis methods and nine thromboplastins. For example, for the July 1963 mailout,

319 automated laboratories used 1.7 combinations of methods and thromboplatns as

indicated in Table 3. Twenty-five combinations of method and thromboplastin were not

utilized by any laboratory.

Table 3 suggests that an appropriate model for the analysis of the clotting times

is a two-way analysis of variance layout with interaction and with an error distribution

to be determined. The development of a tentative error model for the resporwes from

the participating laboratories was faciLitated by a special identification study. In this

special study, 13 reference laboratories (th'ose with a reputation for excellence) were

sent three specimens. Each reference laboratory was instructed to report tripUcate

measurements on the specimens obtained with each of the 9 types of thromboplastizw

supplied in the malout kits. Analysis of the special study data showed that a two way

layout provided a reasonable tentative model and that the logarithm of prothrombtn

times provided normal and homoskedastIc residuals.

Therefore the tentative model assumed is that the participating laboratories wiU

produce prothrombtn times xilk which follow the model (2.9) where x 1 k is the

prothrombin time for method i, thromboplastin J, 1=1,2,..., 8, J=1,2,..., 9, and

k=1,2,..., nij a 0. The quantity g in the overall c grand mean, a, Is the effect

due to method I, 0 is the effect

17



Table 3

Number of La orabories Using Each Combination ot Automated Method and
Thromboplastin, July 1983

Method Thromboplartn

A B C D E G H I

1 2 1
2 1 1 5 2
3 5 40 4 2 7 59 19 1 2
1 1 12 1 2 8 9 2 13
5 1 5 1 3 5 3 10
6 2 1 2
7 5 2 2 2
a 2 54 1 1 1 9 3 2 2

9 121 S 6 11 87 42 8 29

Method Codes, 1, Autofi (Date)1 2, Clotek (Byland); 3, Pibrometer (BloQuest); 4,

Coag-A-Mate 150 or Dual Beam (General Dtagnotlc): 5, Coag-A-Kate 2001 or X2

(General Dagnoetcs); 6, Coagulation Profiler (Blo Data); 7, Coagulizer (Sherwood);

9, Electra (Medical Laboratory Automation).

ThromboPlastin Codes: A, Dade Activated Liquid; B, Dade C; C, Dade Reagent; D,

Hyland Dried; E. Hyland Liquid; FP, Ortho; G, SimpIastin (General DiagnostcS); H,

Simplastin A; I, Simplastin Automated.
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due to the combinaor Of Od I and UftrombopLastin J. The u I I k a"e tnatively

normal with mean zero and standard deviaUon o. *

The generalized Likelhood for model (2.9) with all n j > 0 is given in (2.10).

Table 3, however, shown that a number oE the nij are 0, that ti ceL (1,A), (1,C),

(1,F), ... are empty so that the generalized lkeLihood is not directly applicable.

we overcome this difficulty for c>O a foUows. To ceU (1,A) we awingn a large

artificial value x, K>O; to cell (1,c) we assign the artificial value -K; to ceLL (1,K)

we amigr the value 42X; to cell (1,H) we asmign the value -2K; .... The procem

continues until all empty cel have been asslgned an Artificial value. A Suitable

magnitude for K is determinod by the location and spread of the basis data. In our

came all the logarithms of prothrombln Uses are of the order 3 with a standard

deviation of order .1 so that a value of K-10 would sffice. The strategy o

aiigning isolated artificial values +K, -K, +2K, ... is required In order to preclude

the formation of a cluster of artificial outliers. In the ma ti-tzUon of (2. 10)

modified by incluxion of artificial outliers, the influence theme artificial outliers exert

on the estimates of g. a , j 0, y, I and oE will be at moot of order

a quantity which iu by conwtruction Virtually zero. This procedure for mimi values

requires that every row and every column contain at least one non-empty cell.

The model-critical or self-critical two-way analysis of variance procedure =

applied to the twelve mailouts mentioned above. We provide only representative

SAmmM-Ief of these analyses. Table i, provides the reslts for grand means IA and

standard devlations a of the analyes for c = .1, .2, .25, and .3 and for the

aimn value analysis of variance (AHOVA). In every came, the grand mean remain

virually the sam acrom the -al least squares ANOVA and generalized Likellhood

1,,
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analYsts With C =.1, . 2, .25, and .3. Also in every case, the estimate of the

standard deviation decreases dramatically with an increase in c to 0.1 and decreases

Uittle thereafter.

For c .3 and sample nuzmber 1,* for emample, we compute

2 it.071 .4

= 70.60,

which is strongly stattsticaLly significant according to Table 1 and therefore indicates

that the model and data are not consistent as they stand. The mwdtIplier 246 Is

n-(I+J-1)-(I-1)(I-1) where n a 318, the number of participating 'Aboratories, I

S, the number of methods, and J = 9, the nu~mber of thrombopLastlin. The decrease

in estimated standard deviation in due to the removal of the iufluence at the out of

control laboratories, whoee prothrombin times are not consdatent with the two -way

layout with interaction and with a normal error distribution. These out of control

laboratories are easily determined by an examination of the generalized Likelihood

residuals.

Similar results concerning standiard deviation are obtained for all twelve

mallouts. This behavior is of course related to the estimates of g, and a, 3) , and

yjj~ for (uising value) aximi Likelihood or (misefing value) least squares and for

the generalized likelihood. Sample 12, the last sample In the mailout of July 1963

provides a typical IMustration of the behavior of the estimates of the parameters a,

and 0)as we move from least squares to generalized likelihood (c = 0.25). These

reinate are presented in Table 5. Similar results obtain for the estimates of the yt j.

Theise variations assme their true importance when the estimates are all combined to

obtain the predicted cell means. Once the cell means and the estimated standard

deviation are available, standardized grades for each Laboratory are obtained. A
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standardized grade in the number of standard deviatlorw by which a partical-%

laboratory differs from the predicted c.U mean. For examl, if a laboratory's
1S

prothrombln time results In a stanidardited grade at +3, this indicates that the

laboratory's reported time was 3 estimated a units above the ceU (I.e., method and

thLrombopiastin combination) mn.I

The selection of a critical value beyond wtich a la:b.oratory's performance Wold

be conside red out of control, requLired the resporwible decision makerv to trade of

two types of error. DoL~ar cot or another single measurement unit for the relative

weight to be assrigned for falsely failing a satisfactory lab versai faLsely pas"in an

unsatisfactory lab wore and are not available. Min, the selection of a critical Value

was based on the )udgmet of the program administrators after a review of the

impuicatlons of the various alternatives. Program administrators settled on a type I

error level of 2%. Thu.s, *e critical Interval was set at +2.3 standard units about

each ceU mean. This reprsented a substantial reduction in the wize of the inter~sl

from the three standard units that had been used with the prior grading system. -

Thew practical effect of the application of seLf -critical estimation on the grading

can be illustrated by corwiderin the differences In the laboratories falling outside the

critical region. In Table 6 we give a list of the laboratories falling outside the

critical region usfing least squares estimation an weU as thoee determined from

model -critical estimation with c-. 25.
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Table 4

C.timates a generalized likelihood grand means and standard deviation a of model
(2.9) for 12 procIcency study mailouts.

Missing Value lodel-Critical Estimates
sample ,nOVA c=0.10 c-0.20 c-0.25 c=. 30

January 1992

Grand man 2.4.4 2.4 2.44 2.44 2.44
1 sD .071 .053 .050 .050 .049

Grand man 2.97 2.66 2.66 2.66 2.86
2 So .071 .051 .046 .0/." .043

Grand man 3.05 3.04 3.04 3.04 3.04
3 SD .077 .054 .050 .048 .047

July 1962

Grand man 2.54 2.54 2.54 2.54 2.54
4 SD .056 .056 .054 .054 .053

Grand mean 2.76 2.75 2.75 2.75 2.75
5 SD .071 .059 .058 .057 .057

Grand mean 2.99 2.99 2.99 2.99 2.99
6 SD .063 .059 .058 .057 .056

October 1962

Grand mean 2.51 2.51 2.51 2.50 2.50
7 SD .063 .050 .048 .047 .046

Grand mean 2.99 2.99 2.99 2.99 2.99
6 SD .071 .057 .055 .054 .052

Grand mean 3.21 3.21 3.21 3.20 3.21
9 SD .077 .074 .071 .070 .069

July 1963

Grand mean 2.49 2.49 2.49 2.49 2.49
10 SD .063 .051 .050 .049 .048

Grand mean 2.89 2.99 2.89 2.69 2.69
11 SD .067 .056 .054 .054 .053

Grand man 3.12 3.12 3.12 3.12 3.12
12 SD .077 .060 .058 .057 .056
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Table s Out of Cr trol E&bratorea 3
CoU NoUn and Standardized Grades

LAaut Squar*e Model-Crltical (c=.29)
a'- .099 a(.25) w .057

011 Standardised cell Standardted

c11 Mon Grad NMan Grades

(3.F) 3.171 -5.57 3.169 -7.51
-2.73 -3.67

2.23 3.11
-1.77 -2.35

(6, 3) 3.051 -7." 3.077 -10.5"
-1.•94 -3.09
2.23 2.55

2.30 3.

(3, A) 3.047 1.32 3.149 2.40

(3, 6) 3.147 2.03 3.303 2.92

(5, A) 3.04" 2.66 3.250 4.52

(1, 3) 3.210 1.31 3.109
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Not* tihat only 5 of 316 laboratories are Judged an being out of control using the

least square@ estimates (6.35 wre expected) while with the model -critical procedure

12 Of 316 obMerwtioa fall in the critCic region. This is the case Since first, under

least squares estimation with missing values, the outlying osrvations have the

greatest Influenc* on the parameter estimatesn and second, the Iterative process

involving the assignment of expected values to EM cells Imparts an Influence to the

estimate of the standard deviation. The @*lf -critica procedure ImPartO by cosuction

zeo influence to the estimate at the standard deviation. Mhen the out -at-control

laboratories are remoe from the data base and the data re -analyzed in accordance

with the two -way layout with normal error and interaction model, the parameter

estimates, Including a'(c), are virtually unchanged for c =.1, .2, .25, and .3. The

re -computed value at J (lt2,c) to no longer significant for any value of c in

-0. 2 A c O. 5.

The analysis and resualts described for mailout 12 of the New York State

Department of Health hematology proficienicy testing program are typical of those

obtained for the remaining 11 studies. Mn each case the out -oif-control laboratories

are quickly and easiy Identified with rewatant high-quality service supplied by the

laboratories.

5. conclusions

The grading system for this proficiency testing program is aimed at detecting

laboratories whose results depart from the structural and error model that governs the

ma~ority of the tosting laboratories. Even after the form of the appropriate error

model had been Identified, parameter estimators robust against the high influence of

outlying observations are essential. Self- or model critical estimation which alow
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for the f1ttWAnexAu robusnt estImation of both location and scale parameters in the

presence Of empty cells tI tum weU ulted to this problem.

ml. approach substantially Improved the efficiency of the proficitency testing

grading procedure in NeW York State a evidenced by the reduction averaging 20% in

the standard deviation estimates, the almost routin detection of out -of-control

laboratories, and the evolution to a much more uniform grading procedure.

The model-crilical procedure incorporated the tentative model in making an

aineiemant of the internal conwistency of the model and the data through the

parametric modification of the way information concerning a tentativ model is

extracted from the data. In the hemotology testing program omoe data was found to

be inconsistent with the model but thi need not always be the cam; It Is often the

case that the proposed model Is Inadequate to deal with the data.
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